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Fig. 6. Imaging comparisons between orthogonal (left) and brick (right) geometry using horizon slices of OVT 
gathers. (a) Upper-right OVTs, (b) Lower-left OVTs, (c) Reciprocal OVTs, upper right + lower left, (d) as (c) with 
amplitude scale just covering all brick amplitudes. 

a) 

b) 

c) 

d) 
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Slanted geometry 
In this part of the paper the slanted geometry is equivalent with the orthogonal geometry and with 
the brick geometry that are discussed in the first part.  

LMOS in slanted geometry 
The shot lines of the slanted geometry being considered here make an angle α of 63.4 degrees with 
the receiver lines [tan (α) = 2]. Appendix B discusses the determination of LMOS in this geometry (with 
RLI = SLI, where SLI is defined as the inline distance between two neighboring shot lines). Figure 7a 
shows the result of this determination: three slanted spreads share a midpoint with the same absolute 

offset. This offset is the LMOS of this geometry. Figure 7b illustrates the fold map for all absolute offsets 
< 497.55 m. The theoretical value of LMOS is 1.25 RLI = 500 m; in Figure 7b the station intervals are 
very small so that the actual value of LMOS is very close to the theoretical value for infinitely small 
station intervals. Figure 7c shows the fold map for slanted geometry with 50-m station intervals. Now 
LMOS = 476.5 m, nearly the same as for the equivalent brick geometry (see Figure 2). 

Fig. 7. LMOS in slanted geometry. (a) At midpoint M three slanted spreads possess a shot/receiver pair with 
exactly the same absolute offset. LMOS in this slanted geometry equals 1.25 RLI, same formula as for the brick 
geometry. (b) Fold map of slanted geometry for all offsets < 497.55 m. Line intervals in this example are 400 
m, whereas station intervals are 5 m. The locus of all midpoints sharing the same absolute offset is an ellipse 
in slanted geometry. The arrow points at a position where three ellipses meet. This point corresponds to 
midpoint M in (a). For hexagon see Discussion: LMOS. (c) Fold map in equivalent slanted geometry for all offsets 
< 476.4 m. The black bins are empty and correspond to bins with LMOS = 476. 5m. Compare with Figure 2.  

c) 
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The beauty of this slanted geometry is that it has the same LMOS as the equivalent brick geometry, 
whereas the shot lines are now continuous. 

OVTs in slanted geometry 
Figure 8 illustrates that the midpoint area of a slanted spread has a diamond shape that is even more 
skewed than the shot lines; this extra skew is caused by moving the receiver spread with one station 
for every other shot along the shot line. As a consequence, also the OVTs are strongly skewed. Also, 
the continuous area of each OVT extends across a wider range of midpoints than in the equivalent 
orthogonal geometry 

Figure 9 illustrates for slanted geometry what Figure 4 illustrates for orthogonal and brick geometry. 
The fullfold area of slanted geometry (Figure 9a) has jagged right and left edges. Also the edges of the 
shortest-offsets OVT gather (Figure 9b) and of the long-offset OVT gather (Figure 9c) are strongly 
jagged. Yet, in the crossline direction there are now only discontinuities between OVTs (every RLI), 
unlike in the brick geometry where there are spatial discontinuities every RLI/2. 

Reciprocal offset-vector tiles are again formed by crosses consisting of a short piece of shot line and a 
short piece of receiver line, similar as shown in Figure 5a-right for orthogonal geometry. However, for 
slanted geometry the crosses are not square but skewed.  

OVT imaging with slanted geometry 
For the same model as used before for orthogonal and brick geometry, Figure 10 shows the horizon 
slices. Figure 10a and 10b show the result of imaging singlefold OVT gathers for the upper-right corner 
and lower-left corner of the slanted spread, respectively. The input to Figure 10a consists of the same 
range of offsets and azimuths as used as input to Figure 6a, and Figure 10b corresponds to Figure 6b.  

Figures 10c and 10d show the result of twofold imaging: the sum of the upper-right and lower-left 
corners with the same amplitude scales as used in Figures 6c and 6d, respectively. Because the highs 
and lows in Figure 10a do not correspond to the lows and highs in Figure 10b, their sum still shows 
considerable variation in amplitude, although not as much as the corresponding result for brick 
geometry (Figure 6c-right and 6d-right). 

Discussion 
To come to a final conclusion on the relative merits of orthogonal, brick and slanted geometries, I 
discuss the following aspects 

1. LMOS, 
2. Imaging, 
3. Suitability for prestack noise removal, and 
4. Efficiency 

LMOS 
LMOS determines the shallowest level where the stack has nonzero values. The larger LMOS the larger 
the time where there is at least singlefold coverage. Brick geometry and slanted geometry provide 
shallower coverage than orthogonal geometry for the same line intervals and the same sampling 
intervals. 

Figures 4b and 9b show singlefold coverage for the same range of inline and crossline offsets centered 
around zero offset and with maximum offset equal to RLI √2 (LMOS in orthogonal geometry). Yet, the 
fact that LMOS is smaller in brick and in slanted geometry than in orthogonal geometry means that 
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there must also be a complete singlefold coverage in brick and in slanted geometry for a smaller range 
of offsets, just up to LMOS. For slanted geometry this can be seen easily in Figure 7b. Selecting from 
each slanted spread only the midpoints inside a hexagon as indicated also provides single coverage, 

Fig. 8. Slanted spread with OVTs. Each OVT has a diamond shape and extends across a larger range of midpoints 
than equivalent OVTs in orthogonal geometry. 

a) 

b) c) 

Fig. 9. OVT-analysis of slanted geometry. (a) Fold map of example geometry, (b) ) shortest offsets OVT gather 
for inline offsets -400 – 400 m and crossline offsets -400 – 400 m, the absolute offsets in this display range from 
nearly zero to 400√2, (c) OVT gather for inline offsets 1600 – 2400 m and crossline offsets -2400 — -1600 m. 
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but now with maximum offset equal to LMOS of the slanted geometry. In practice, this can be achieved 
by just selecting in each midpoint the smallest absolute offset.  

A smaller LMOS is particularly important for data acquisition with large line intervals; yet, it should be 
realized that imaging of shallow data requires in general especially small station intervals due to the 
slow velocities. 50-m sampling as in my examples is not normally good enough. Smaller line intervals 
also lead to shallower coverage and this route is taken more often nowadays.  

Imaging 
In orthogonal geometry each OVT consists of a continuous area of data taken from a single cross-
spread. A tiling of OVTs in an OVT gather features spatial discontinuities along the edges of each tile. 
When imaging an OVT gather the data required to create an image will often extend across more than 
one tile. This phenomenon is nicely illustrated in Vermeer (2012, Fig. 10.17e). The spatial 
discontinuities across edges affect the quality of the image and may lead to acquisition footprints as 
shown in Figures 6a-left and 6b-left. In brick geometry there are more spatial discontinuities but they 
are smaller. As a consequence, Figures 6a-right and 6b-right show an acquisition footprint that is less 
serious than for orthogonal geometry.  

This difference between orthogonal and brick geometry changes drastically when combining reciprocal 
OVT gathers as done in Figure 6c. The arrangement of shots and receivers illustrated in Figure 5 ensures 
that the two gathers are very much complementary leading to a substantial reduction in acquisition 
footprint. For brick geometry there is much less reduction in footprint when combining the two OVT 
gathers. Comparison of Figure 10 with Figure 4 shows that twofold imaging with reciprocal OVT gathers 

a) 

c) 

b) 

d) 

Fig. 10. Horizon slices for OVT gathers of slanted geometry. (a) Upper-right OVT, (b) Lower-left OVT, (c) 
Reciprocal OVT, upper right + lower left, (d) as (c) with amplitude scale as in Figure 6d. Compare with Figure 6. 
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in slanted geometry is not as good as in orthogonal geometry but better than in brick geometry. This 
result emphasizes the benefit of continuous shot lines. 

Suitability for prestack noise removal 
The difference between properties of coherent noise and desired signal can be optimally exploited in 
cross-spreads and in slanted spreads because the events themselves are continuous throughout the 
spreads. Three-dimensional filtering can be applied in those spreads leading to clean output results. A 
nice example for slanted spreads is shown in Karagül et al., (2004) and is reproduced in Vermeer (2012, 
Fig. 2.39). In brick geometry coherent events are only coherent in small ranges and it is much more 
difficult to exploit such coherency.  

Efficiency 
For equivalent parameters, brick geometry requires twice as many shot lines as orthogonal geometry. 
In areas where lines have to be cleared or otherwise be readied this difference involves considerably 
more effort, hence cost, if only because of the extra distance to be traveled from one brick to the next.  

For equivalent parameters, slanted geometry requires clearing and readying of longer shot lines. The 
difference with orthogonal geometry is 12%. If there is no clearing or readying to be done it still 
requires traveling the extra distance. 

For the same survey area orthogonal geometry provides a somewhat larger area with fullfold coverage 
than brick and slanted geometry. Also the OVT gathers have better behaving edges for orthogonal 
geometry than for the other two geometries. 

 

In summary, brick geometry only scores better than orthogonal geometry for LMOS, whereas slanted 
geometry has this same advantage over orthogonal geometry. Slanted geometry provides better 
imaging than brick geometry because of the better spatial continuity. Orthogonal geometry scores best 
for imaging and for efficiency, whereas it matches slanted geometry with respect to noise removal.  

 

The brick geometry discussed in this paper is (was) the most common implementation of staggered 
shot lines. Another implementation is the triple stagger in which only one-third of each shot line is 
sampled with actual shots. In my view using triple stagger does not serve any useful purpose.  

Conclusions 
This study has shown that LMOS of brick geometry is about 12.5 % smaller than the LMOS of the 
equivalent orthogonal geometry, not as big a difference as often thought. Slanted geometry has the 
same LMOS advantage as brick geometry. These advantages become less important with smaller line 
intervals.  

It turns out that singlefold OVT gathers are also possible in brick geometry with even better imaging 
results than with equivalent OVT gathers of orthogonal geometry. However, the combination of 
reciprocal OVTs (which is always possible in the fullfold area of a center-spread geometry) produces 
considerably better results with orthogonal geometry than with brick geometry. Imaging of slanted 
geometry using reciprocal OVTs is better than brick geometry but worse than orthogonal geometry. 

A major advantage of orthogonal geometry and slanted geometry over brick geometry is the continuity 
in the cross-spread and slanted spread which allows much better coherent-noise removal than in the 
discontinuous cross-spread of brick geometry.  
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With respect to implementation of the geometries in the field, orthogonal geometry is more efficient 
than slanted and brick geometry.  

All in all, this paper does not provide any reason to change earlier recommendations not to use brick 
or slanted geometry.  

This paper has also confirmed earlier results reported in Vermeer (2012) that optimal acquisition 
requires regular geometry with center-spread configurations. One-sided (only two quadrants of each 
cross-spread) acquisition is suboptimal as it does not provide reciprocal OVTs and it tends to produce 
a more serious acquisition footprint, also after imaging. An alternative is to use very small line intervals 
to reduce the sparsity of the geometry. 
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Appendix A LMOS in brick geometry 
 

For the derivation of a good approximation of LMOS in brick geometry, I assume equal shot line interval 
and receiver line interval with SLI = RLI = 2a. Figure A1 illustrates this situation. Inside the box with 
origin O in its center the bricked shot line with shots S3 may generate midpoints around the center of 
the box with absolute offsets smaller than the diagonal of the box (which is representative of LMOS 
for an orthogonal geometry that is not bricked). For instance, if S3 would coincide with the upper 
receiver line, a receiver on the lower receiver line with coordinates (0, -a) would produce a midpoint 
at O with offset equal to 2a. Yet, this value does not represent the LMOS of the brick geometry. 

To determine LMOS of the brick geometry it helps to realize that the cross-spread of a partially sampled 
shot line consists of a number of narrow strips with crossline dimension a (see Figure 3 in main text). 
So, let us investigate the midpoints in the upper part of the box in Figure A1. The three cross-spreads 
with center at R1, R2, and R3 provide midpoints to this strip. The midpoints having equal offset LMOS 
are located on three circles with their centers in R1, R2, and R3 and with radius LMOS/2. Because of 
symmetry circles with center in R1 and R2 always intersect along line x = 0. See also Figure A2, which 
shows three circles with radius > LMOS/2. The upper part of the small central yellow area with fold 1 
(above horizontal black line) consists of midpoints provided by the lower circle. 

So, we have to find the intersection of three circles in one point with formulas 

offset1 = 2�(𝑥𝑥 + 𝑎𝑎)2 + (𝑦𝑦 − 𝑎𝑎)2 

offset2 = 2�(𝑥𝑥 − 𝑎𝑎)2 + (𝑦𝑦 − 𝑎𝑎)2 

offset3 =  2�𝑥𝑥2 + (𝑦𝑦 + 𝑎𝑎)2 

or LMOS = offset1 = offset2 = offset3, where x = 0. For (x, y) = (0, a/4), offset1 = offset2 = offset3 = 5a/2 
= 1.25 RLI. This value is really the largest minimum offset in the brick geometry. It is still 13% smaller 
than LMOS = 2a√2 for orthogonal geometry, but not as much as suggested in Vermeer (1998). 

The above derivations were made assuming infinitely small shot and receiver sampling intervals. In 
practice, using realistic sampling, the actual LMOS are smaller than the ones derived here. 

Fig. A1. Derivation of LMOS in brick geometry. Fig. A2. Fold map for absolute offsets < 520 m in brick 
geometry with 5-m sampling and LMOS = 500 m. 
Circles with 520-m diameter. 
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Appendix B LMOS in slanted geometry 
 

For the derivation of a good approximation of LMOS in slanted geometry, I assume equal shot line 
interval and receiver line interval with SLI = RLI = 2a. Figure B1 illustrates this situation. The box with 
origin O in its center is diamond-shaped this time. In the two halves of the box on either side of the 
long diagonal there are now three slanted spreads that may provide the largest minimum offset. In the 

lower right half the slanted spreads at 
the lower-left edge, the lower right edge 
and the upper-right edge may 
contribute. For each slanted spread a 
shot-receiver pair is indicated with its 
midpoint at (x, y).  

To determine LMOS of the slanted 
geometry we first compare shot receiver 
combinations (S1, R1) with (S2, R2) that 
share the same midpoint (x, y). Then we 
have S1 (y – a/2, 2y + a), R1 (2x – y + a/2, 
- a) and S2 (y + 3a/2, 2y + a), R2 (2x – y – 
3a/2, -a) with  

offset1 = �(2𝑥𝑥 − 2𝑦𝑦 + 𝑎𝑎)2 + (2𝑦𝑦 + 2𝑎𝑎)2 

offset2 =  �(2𝑥𝑥 − 2𝑦𝑦 − 3𝑎𝑎)2 + (2𝑦𝑦 + 2𝑎𝑎)2 

where offset1 and offset2 are the corresponding absolute offsets. Note that the offset formulas 
represent ellipses for slanted geometry. Note also that the y-components of the two offset vectors 
S1R1 and S2R2 are the same. We find that offset1 = offset2 along line l: x - y = a/2. In the third slanted 
spread we have S3 (y + a/2, 2y – a) and R3 (2x – y – a/2, a) with 

offset3 =  �(2𝑥𝑥 − 2𝑦𝑦 − 𝑎𝑎)2 + (2𝑦𝑦 − 2𝑎𝑎)2 

Setting offset3 = offset1 and using the relation found for offset1 = offset2 we find (x, y) = (a/4, - a/4) 
and offset1 = offset2 = offset3 = 5a/2 = 1.25 RLI. This value for LMOS happens to be the same as for 
the brick geometry.  

Substituting the derived value for (x, y) into the coordinates of the three offset vectors we find 
S1 (- 3a/4, a/2), R1 (5a/4, -a), S2 (5a/4, a/2), R2 (-3a/4, -a), and S3 (a/4, -3a/2), R3 (a/4, a). Note that 
the x-coordinates of S3 and R3 are the same. 

The above derivations were made assuming infinitely small shot and receiver sampling intervals. In 
practice, using realistic sampling, the actual LMOS are smaller than the ones derived here. 

 

 

 

Fig. B1. Derivation of LMOS in slanted geometry. 
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